
_l _ ...:

On the efficacy of source code optimizations for cache-based systems

Rob F. Van der Wijngaart, MRJ Technology Solutions, NASA Ames Research Center, Moffett

Field, CA 94035

William C. Saphir, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Abstract. Obtaining high performance without machine-specific tuning is an important goal

of scientific application programmers. Since most scientific processing is done on commodity

microprocessors with hierarchical memory systems, this goal of "portable performance" can

be achieved if a common set of optimization principles is effective for all such systems. It is

widely believed, or at least hoped, that portable performance can be realized.

The rule of thumb for optimization on hierarchical memory systems is to maximize tem-

poral and spatial locality of memory references by reusing data and minimizing memory

access stride. We investigate the effects of a number of optimizations on the performance

of three related kernels taken from a computational fluid dynamics application. Timing the

kernels on a range of processors, we observe an inconsistent and often counterintuitive im-

pact of the optimizations on performance. In particular, code variations that have a positive

impact on one architecture can have a negative impact on another, and variations expected

to be unimportant can produce large effects.

Moreover, we find that cache miss rates--as reported by a cache simulation tool, and con-

firmed by hardware counters--only partially explain the results. By contrast, the compiler-

generated assembly code provides more insight by revealing the importance of processor-

specific instructions and of compiler maturity, both of which strongly, and sometimes unex-

pectedly, influence performance.
We conclude that it is difficult to obtain performance portability on modern cache-based

computers, and comment on the implications of this result.

1 Introduction. Common wisdom in high performance computing is that cost-effective

supercomputers will be based on commodity micro-processors with hierarchical (cache-based)

memory systems. The shift away from vector supercomputers and towards cache-based

distributed systems has brought about two important changes in programming paradigm.

The most well-studied is that from shared to distributed memory parallelism. Less well

recognized is the change in single-processor optimization strategies. Codes designed for

vector machines require inner-loop independence to allow vectorization, and regular, non-

power-of-two memory strides to avoid bank conflicts. Codes designed for cache-based systems

require spatial and temporal locality of data usage. A cache miss is expensive (tens of cycles)

and provokes a memory read of an entire cache line, not just the word being accessed. Good

code uses data many times while it is in cache, and also uses neighboring data, wasting none

of the cache line.

The great diversity of current processors stresses the need for portable performance; in

addition to not requiring code changes from one platform to another (portable syntax),

programs should run efficiently on all similar architectures, e.g., on all RISC processors with

hierarchical memory systems. Syntax portability is provided by standardized languages and

libraries: C, Fortran, High Performance Fortran, MPI, etc. Performance portability appears

to follow from the above observationsabout cache-basedsystems,which translate into a
simple set of guidelines. In scientific computing, the most cache-friendlyarray operations
feature zeroor unit stride. Moreover,loop bodiesought to be 'fat' (many assignments),so
that many operationsare performedon cacheddata. If unit stride is not possible,then one
must avoidpathological strides,just ason vector computers.For cache-basedsystemsstride
issuesaremorecomplexthan for vectorcomputers,though, dueto the effectsof associativity
and non-unit cacheline size (seeBailey '95 [1]).

Generalprocessorand compiler considerationsalsomotivate another classof guidelines.
For instance, most modern micro-processorsare superscalar; they complete severalarith-
metic operations per clock cycle, provided enough independent instructions are available.
This again arguesin favor of fat loop bodies. Modern processorarchitectures are quite
complicated, however, and it is often believed that sophisticated compilers can perform
machine-specificoptimizations unattainable by most human application programmers,for
example through loop unrolling and reordering, register optimization, softwarepipelining,
or prefetching.

Following tile above guidelines, it seemsstraightforward to write code that will run
efficientlyon anycache-basedsystem. Practicetells usthat the situation is morecomplicated.
This paper presentsobservations, simulations, and someanalysis of performance tuning
for cache-basedsystems. We point out severalcounterintuitive results, reminding us that
memory accessesare not the only factors determining performance. Moreover,our results
indicate that compilers are not yet robust enough to trust them to perform all standard
optimizations.

We mention a few strategiesfor obtaining portable performancenot addressedby this
paper. Vendor-optimized library routines may be useful. For instance, the Basic Linear
Algebra Subroutines(BLAS) provided by manyvendors,and alsothrough the recently pub-
lished self-tuning public-domain packagePHiPAC [3], provide fast linear algebra kernels.
While appropriate for someapplications, such libraries arenot appropriate for others. And
evenwhere they can beused,often substantial computation must be performedoutsidethe
library calls. Currently availablesourcecode transformation programs (e.g.the VAST and
KAP preprocessors,supplementedwith preprocessordirectives)can easesomeof the perfor-
mancetuning burden, in principle. But thesecommercialproducts may not be availableon
all computer platforms of interest, and not all sourcecodesareamenableto their optimiza-
tion techniques. Moreover, preprocessordirectives are effectively shorthand for the actual
optimizations, and are thus no moreportable than optimized sourcecode itself. Hence,we
will not considerpreprocessorsor libraries and restrict ourselvesto sourcecode optimiza-
tions carried out explicitly by the application programmer. Blockingor tiling is an effective
technique for optimization on cache-basedsystemswhen many operations are performed
on eachdata element (much reuse). The sameholds for transposemethods that reduce
stride in multi-dimensional problems. Blocking and transposition are not consideredhere,
becauseof the limited reuseexhibited by our sampleproblemsand by manyother important
applications.

We do not attempt to explain in completedetail all performanceresults--although wedo
probe a few examples.Rather, our intent is to examinewhether intuitive source-code-level
optimization techniqueswork, and whether a standard set of such techniquescan provide
portable performance. This is the issueof practical importance for scientific programmers

2

who are not experts in computer architecture and compiler design. Unlike the work by

Decyk et al. [4], however, which considers only three different architectures, our study of

nine current systems suggests that such a set is likely to be rather small, and to offer limited

universal utility.

2 Kernel code and optimizations. The starting point for our example is the SP (Scalar

Penta-diagonal) code from the NAS Parallel Benchmarks 2 (NPB 2) [2] suite. SP contains

the essential elements of a computational fluid dynamics program heavily used at NASA

Ames Research Center. It solves the Navier-Stokes equations using an Alternating Direction

Implicit scheme. SP constitutes a stress test on the memory system of the computer, since

fairly few operations per grid point are executed in any of its loops.

The most critical part of the code is the line solver, which solves systems of linear equa-

tions, one for each grid line in a 3D grid. The code boils down to solving multiple indepen-

dent, banded, penta-diagonal matrix equations using Gaussian elimination. Since there are

three families of grid lines in 3D space, there are also three different solver routines (factors).

Our three code examples, named x-, y-, and zloop, are parts (forward elimination only) of

the computational kernels of these routines. Although they have a similar structure, the

memory access patterns in the three kernels are quite different, making them a good choice

for comparing optimization strategies.

Each computational kernel solves a large number of independent penta-diagonal linear

systems, with three right hand sides for each system. The x- and yloop fragments are

shown in Appendix A. We now describe the codes in more detail, lhs(nx,ny,nz,5) and

rhs (nx,ny,nz,3) are 4-index Fortran arrays of 8-byte real numbers, nx, ny, and nz are the

dimensions of a 3D grid on which the Navier-Stokes equations are discretized. The linear

systems for the xloop fragment are defined as follows. For fixed values j and k, lhs (:, j, k, :)

is an nx×5 array containing the non-zero elements of a penta-diagonal matrix Ajk of size

nx×nx. 1. Similarly, rhs(: ,j ,k, :) defines an nx×3 array Bjk that defines three right hand

sides. For each i and j we solve the independent systems Ajkxjk = Bjk, where xjk is an

nxx3 array comprising the three solution vectors. These systems are solved by Gaussian

elimination. The solution vectors xjk are not stored as a separate array, but overwrite the

values in rhs. The xloop fragment thus solves ny.nz penta-diagonal linear systems that

are defined along grid lines in the x-direction. The yloop and zloop fragments are similarly

defined, except that they solve linear systems along grid lines in the y- and z-directions. In

the notation above, this means that we consider a left hand side of lhs(i, :,k, :) for yloop

and lhs(i,j, :, :) for zloop, and similarly for the right hand sides.

Fortran stores arrays in column-major order, so that lhs (±, j, k, p) is adjacent in memory

to lhs (i+l, j ,k,p). Thus, for xloop successive steps of the Gaussian elimination reference

elements with unit stride, while for the yloop and zloop fragments, successive steps reference

elements with stride nx and nxxny, respectively. Note also that the 5 non-zero elements in

every row of every left hand side matrix are separated by a very large distance of nx.ny.nz

elements.

The above description applies to the baseline code (no optimizations). Each subroutine

is executed for four grid sizes. For simplicity we always use a cubic grid (nx = ny = nz).

1We use Fortran 90 array notation to define submatrices of lhs and rhs.

3

The four sizesare 163, 323, 643, and 803points. The correspondingstoragerequirementsare
just over 0.25 MB, 2 MB, 16 MB and 32 MB, respectively. A size of n is henceforth used

to indicate a grid of nxnxn points. Since pathological strides, especially powers of two, can

cause recently used data to be flushed from cache [1], we pad all array grid dimensions by

one unit. For example, lhs is actually dimensioned lhs (nx+t ,ny+l ,nz+l, 5).

In the subsequent analysis the baseline code is designated by the suffix 1. We then apply

a series of cumulative optimizations, indicated by suffixes 2 through 5, and two additional

optimizations, designated 6 and 7. In section 7 we describe an alternate, more radical

optimization.

All code variations contain the same number of array references and floating point oper-

ations, but they differ in the memory access patterns, and in details of the implementations.

In principle, any of the optimizations could be done automatically by the compiler, though

some, especially number 4, are largely beyond current compiler technology. We examine the

effect of each optimization on a wide range of modern processors. The optimizations are as
follows:

1. Baseline, which is now contained in NPB 2 [2].

2. Eliminate temporaries for incremented indices, i.e. replace il by i+l, etc. These

temporaries had originally been introduced to ease programming. Removing them

may enable better register allocation. "Good" compilers should be able to perform the

elimination automatically, and most in fact do, as we show later. This optimization

does not affect memory accesses, but we include it as a sanity check to identify compilers

so bad they cannot detect constant expressions.

3. Unroll short inner loops of fixed length (m=1,2,3). This reduces loop overhead and

register demand. Again, good compilers should be able to do this automatically, but,

surprisingly, we found that several do not. The optimization does not affect mem-

ory access patterns directly, but might affect them indirectly by making it easier for

compilers to interchange containing loops (see Section 6).

4. Move the last index of rhs and lhs--called the component index, as opposed to the

grid indices i, j, and k--to the first position. This is thought to improve spatial data

locality, since at each grid point all component indices of both arrays are referenced.

5. Unroll the first available loop not containing a recurrence (j for xloop, i for yloop and

zloop) to a level of two. This increases the number of independent computations in

the inner loop. Loop unrolling can be done automatically by a compiler, though in

this case the loop bodies are rather large. This optimization does not directly affect

memory access patterns.

Note the location of the assignment fac2 (= 1.d0/lhs(3,i,j+l,k) in xloop-5). It is

moved to the top of loop body, far ahead of the assignments that make use of fac2, to

improve possibilities for optimal scheduling by the compiler.

The above optimizations all employ the canonical loop orderings for z-, y- and zloop:

running index k for outer, j for middle, and i for the inner loop. But it is most natural

4

from the application programmer's point of view to finish a whole grid line in the inner loop

before moving to the next grid line. This leads to two additional code variations for yloop

and zloop:

6. Use j and k as the inner loop running index for yloop and zloop, respectively, while

keeping the unrollings described in optimization 5. The running index for the middle

loop in each of the two loop nests is always i. This causes large array strides in the inner

loop, which touches array elements with indices (:, i, :, k) for yloop (and similarly for

zloop). These large strides appear bad for locality, but in the next i-iteration (next grid

line), the inner loop touches indices (:, i+l, :,k), which are adjacent. We can expect

them to be in cache if the amount of data touched in the inner loop is substantially

smaller than the cache size.

7. Again use the natural loop order (optimization 6), but undo unrolling optimization 5.

3 Machines. The cache-based systems in this study are mainly RISC processors: MIPS

R5000, MIPS R8000, MIPS R10000, DEC Alpha EV4, DEC Alpha EV5, IBM POWER2,

Sun UltraSparc I, HP PA-RISC. The one CISC architecture is the Intel PentiumPro. Almost

all processors examined here are currently used in parallel platforms: MIPS R8000 in an

SGI PowerChallenge, MIPS R10000 in an SGI Origin2000, DEC Alpha EV4 in the Cray

T3D, DEC Alpha EV5 in the Cray T3E-900, IBM POWER2 in the SP Wide Node, Sun

UltraSparc I in a workstation cluster, and HP PA-RISC in the Hewlett-Packard/Convex

Exemplar SPP2000. The PentiumPro is used in several experimental PC-based clusters,

including those at NASA Ames and Lawrence Berkeley National Laboratory.

Table 1" Processor specifications summary

Name

R5000
R8000
R10000
EV4
EV5
POWER2
PPro

Sparc
PA-RISC

J90se
C90

Ll-cache

KBytes
32i+32d
16i+16d
32i+32d

8i+8d
8i+8d

32i+256d
8i+8d

16i+16d
1024i+1024d

N.A.
N.A.

L2-cache cacheline

KBytes Bytes
0 32

4096 512
4096 128

0 32
96 32
0 256

256 32
512 64

0 32
N.A. N.A.
N.A. N.A.

associativity

2
4
2
1
3
4
4
1
1

N.A.
N.A.

CPU
MH2
150
90 l
195
150
450
66
200
167
180
100
250

Peak

MFlops/s
300
360
390
150
900
267
200
334
720
200
1000

For comparison we also examine two vector processors, the Cray J90se and C90. These do

not use caches for vector operations, but rely on memory banking and specialized hardware

to provide sufficient memory bandwidth. Machine specifics are summarized in Table 1.

They reflect the modifications made to the processors to integrate them in their parallel

platforms. In particular, the DEC Alpha EV4 and EV5, as used by Cray Research in the

T3D and T3E, lost their off-chip L2 and L3 caches, respectively. In the T3E, the level 3 cache

is replaced stream-buffer facility developed by Cray. This special hardware automatically

detects adjacent cache misses, and prefetches the next cache line, since it is likely that the

code is accessing data with unit stride.

One of the most important system parameters, the memory bandwidth, is not listed,

because it is not directly relevant to our analysis. It is assumed that memory bandwidth

is always an active constraint on processor performance of the cache-based systems. On

all machines we select the highest acceptable level of optimization for the Fortran compiler

(generally -03). Fortran compilers supplied by the computer vendor are available for all

platforms, except the PentiumPro. On the latter system the Portland Group Fortran com-

piler release 1.6, version 1.1 is used. Other compilers are: XL Fortran for AIX, version 4.01,

on the POWER2, MIPSpro for IRIX, version 7.2, on the R10000, MIPS for IRIX, version

6.2, on the R5000 and R8000, Cray CFT77, version 6.2.3.0, on the EV4, Cray f90, version

3.0.1.1, on the EV5, WorkShop Fortran 77, version 4.2, on the UltraSparc, HP Fortran 77,

version 10.30, release V1.2.1, on the Exemplar, Cray f90, version 3.0.1.0, on the C90 and
J90.

4 Measured performance results. Performance figures for the kernel loop nests, in mil-

lions of floating point operations per second (Mflops/s), are presented in Appendix B.1. The

numerical results are supplemented by solid disks (•) whose magnitudes indicate the relative

performance within the set of optimizations for each factor for a particular grid size. In the

following paragraphs we point out a few highlights of the results contained in Appendix B.1.

The main finding is that optimizations have different effects for different processors, factors,

and grid sizes, so that no single choice yields portable performance. For brevity, we mention

particular idiosyncrasies only once or twice, rather than every time they appear.

MIPS R5000 (Table 6). Optimization 3 (unrolling the m-loop) yields a marked improve-

ment for the x-factor, and a smaller improvement the y- and z-factors. This feature, common

to almost all processors, is surprising, given that it should be trivial for the compiler to unroll

automatically. Optimization 4 (moving the component index) gives a substantial improve-

ment for the y-factor and less for the x-factor, but reduces performance for the z-factor. The

z-factor benefits most from optimization 6 (natural, large-stride loop ordering, as opposed

to the canonical ordering).

MIPS R8000 (Table 7). Optimization 5 (unrolling the i-loops for the y- and z-factors)

greatly deteriorates performance. We also notice the reduced processor performance for large

grids that do not fit completely in cache (sizes 64 and 80), indicating insufficient bandwidth

to main memory. Finally, we observe that the supposedly most cache-friendly x-factor code

performs more poorly than y and z.

MIPS R10000 (Table 8). The best optimization strategy is influenced by problem size.

Optimization 4 is best for small grids but is counterproductive for larger ones.

IBM POWER2 (Table 9). Moving the component index proves positive for the x-

and (slightly) negative for the y- and z-factors. The best performance overall is realized

by partially unrolled, natural loop nests. This leaves unexplained why the optimal x-factor

performs disproportionately well compared to the y- and z-factors.

INTEL PENTIUMPRO 200 MHz (Table 10). The PentiumPro demonstrates great sen-

sitivity of z-factor performance to problem size and loop ordering. The natural order is

generally preferred.

DEC ALPHA EV4 (Table 11). On the DEC Alpha EV4 x-factor performance improves

by unrolling the m-loop, whereas y- and z-factor performances deteriorate under the same

code change. Moving the component index produces a dramatic increase in computational

speed for the x-factor, but a much smaller improvement for the other factors. Best perfor-

mance is obtained for partially unrolled i-loops for the y- and z-factors, but for a completely

'rolled up' j-loop for the x-factor.

DEC ALPHA EV5 (Table 11). The performance of this chip is influenced by the stream-

buffer facility, which greatly favors unit stride access. Hence, the x factor performs best,

moving the component index helps significantly, and the natural loop order with large strides

does poorly. We also note that performance of the x-factor increases with increasing problem

size, unlike all other processors (except the vector processors). Unlike a vector processor,

however, improvement is realized only for long vectors of unit stride.

SUN ULTRASPAR¢ I (Table 13). The UltraSparc is not very sensitive to code optimiza-

tions by the user, except for the very smallest grid size that fits entirely in the cache.

HEWLETT-PACKARD PA-RISC (Table 14). Of all the processors surveyed, the PA-RISC

shows the most severe performance degradation as the problem size increases. This suggests

that the PA-RISC has the greatest imbalance between memory bandwidth and processor

speed of all systems investigated. We also notice a substantial drop in performance when

the auxiliary variables il and i2 in the x-factor are eliminated, whereas similar code changes

in the y- and z-factor have hardly any effect.

Table 2: Sum of number of instances of optimal performance

I x-factor I y-factor z-factor
optimization no. 1 2 3 4 5 1 2 3 4 5 6 7 1 2 3 4 5
best case tally 0 0 4 18 14 1 0 3 6 8 14 4 0 1 4 4 2

6 7
21 4

Performance results are summarized in Table 2. For each processor and each factor we

count the number of grid sizes for which a particular optimization technique is superior to

all others. The table lists the sum of these numbers over all processors.

There is not a single optimization strategy that gives the best performance for all grid

sizes/factors for all processors. But even if we restrict the attention to one processor at a

time, most still do not feature a uniform optimization strategy. Only the IBM POWER2

shows consistently best performance for one single strategy (partially unrolled, natural loop

nest), although even here it is not clear whether better results could not be obtained by

undoing optimizations y//zloop-2 and y//zloop-4. The best overall optimization strategy is:

xloop-4, yloop-6, and zloop-6. If we rule out partial unrolling, which is often considered

impractical, then the generally most acceptable single optimization strategy is: xloop-4,

yloop-4, zloop-4, i.e. the canonical loop ordering, and the component index as the first array

index.

For comparison purposes we also show the performance results of the kernel codes on the

Cray J90 (Table 15) and C90 (Table 16). Even though there are inner loop recurrences in

some cases, the Cray compilers always succeed in vectorizing the codes. With some minor

exceptions, code performances improve and relative performance differences are decreased as

the problem size, and hence the vector length, grows. We conjecture that the slight drop in

7

performanceof somecaseson the J90asthe problemsizeincreasesfrom 64to 80 isdueto the
fact that 80is not a multiple of the hardwarevector length, while 64is. The resultsshowthat
with little or no tuning, both machinesattain approximately 33% of peak performanceon
the larger problems. We concludethat optimization efforts on thesemachinescan probably
be limited to increasingvector length.

5 Cache simulations. Several of the performance results in Section 4 are unexpected, as

we find that minimizing inner loop stride does not consistently give best performance. In

particular, the beneficial effect of the natural loop ordering for the y- and z-factors for several

processors is surprising.

In this section we investigate more carefully the connection between cache miss rate

and performance. The above observation about memory access implies that the simple rule

of thumb of minimizing strides is not sufficient. More detailed knowledge and insight are

needed to design a good optimization strategy. In this section we explore whether a simple

model can improve our understanding of data locality, explain the performance results, and

guide software design. We argue that while such a model can account for cache misses, the

connection between cache miss rates and performance is weaker than is often believed, so

that the goal of portable performance remains elusive.

We use an "intuitive" model to simulate cache behavior. It is deliberately kept simple,

because its main purpose is to correct our intuition about data locality, not to provide the

most detailed description of hardware performance, compiler optimizations, etc. Moreover,

our interest is in determining a priori programming rules for portable performance on cache-

based systems. Whereas detailed performance analysis is of interest in its own right (see

Section 6), it is not useful for devising guidelines if too many parameters are involved that

are either particular to only one or a few systems, or that are not readily quantifiable.

Other cache profiling systems, such as CProf [5] or MemSpy [6], and more general system

simulation packages, such as RSIM [7] and SimOS [8], provide more accurate details regard-

ing actual program performance. However, these tools simulate execution of assembly code,

not machine-independent source code, which means they require invocation of a compiler for

a specific platform. This type of simulation is useful for system design and performance tun-

ing of an application for a particular computer, but not for portable performance prediction.

Moreover, most detailed simulation tools require either many user inputs, or only support

certain processor families (for instance, SimOS and CProf list support only for MIPS pro-

cessors, and RSIM only for Sun SPARC V9/Solaris systems), which again limits portability

and generality.

Our simple model can be applied to all cache-based systems. Its only parameters are

the number of cache lines, the line size, and the associativity. We use it to determine cache

behavior by transforming by hand the array references in the source code to calls to the

cache simulation routines, and counting the number of cache misses as a percentage of the
total number of loads.

The model has the following features:

-- The highest level of cache (L1 or L2) is assumed the memory bottleneck. Its parameters

are used for the simulator, and referencing a data element residing in that cache level is con-

sidered a hit. Modeling other levels as well requires knowledge about the relative bandwidth

and latency between the caches, in addition to the usual parameters that characterize the

8

lower-levelcache.
-- In caseof set-associativecachesa LeastRecentlyUsed(LRU) replacementpolicy of cache
lines is employed. While LRU cansometimeslead to pathologically bad cachebehavior, it
is a reproducibleand usually reasonablepolicy.
-- Memory loadsareatomic, meaningthat a data item in a cacheline canonly be usedonce
the whole cacheline has beenread from memory. We ignore sophisticatedstrategies such
as early restart and requested word .first, since these would force differentiation among cache

misses.

-- Effects of internal cache memory structure, such as interleaving, are not taken into ac-

count, since these would force differentiation among cache hits.

-- We do not consider address translation. All cache addresses are determined directly from

virtual addresses, not from physical addresses, and no lookup in page tables is required.

-- We assume a separate data cache, since unified caches require vastly more information

for simulation, including the assembler version of the code. Whereas this is a reasonable as-

sumption for most L1 caches (see Table 1), most L2 caches are unified (data and instructions

share the same cache). Our model effectively ignores the effects of storage of instructions in

cache memory.

-- Only memory loads are modeled. The structure of the computational loops in the kernel

code is such that stores are always done to memory locations that are already in cache, which

means that no cache lines need to be flushed to accommodate write operations. We ignore

the effects of writing through the cache to main memory.

-- Loads are ordered canonically, meaning that calls to the cache simulation load routines are

inserted in the order in which array references occur in the source code. This precludes out-

of-order execution, and also ignores other possible compiler optimizations that are impossible

to anticipate without inspecting the assembler code.

-- The number of registers is assumed large enough to accommodate all scalars occurring in

the kernel code, so that their storage does not compete for space in the data cache.

Note that our cache model is similar to that used in the loop nest interface of the Cache

Visualization Tool [10], except that CVT models only direct-mapped caches. Relative array

base addresses are fixed by placing rhs and lhs in a common block, separated by a spacer

of known size.

We report here the results of simulations of a subset of the optimizations: 3, 4, and 7.

This subset encompasses the major differences in memory access patterns. Optimizations

1, 2, and 3 have identical memory reference patterns (according to our simulation rules and

intuition); we only present results for 3. Optimizations 5 and 6 correspond to 4 and 7,

respectively, except for the partial loop unrolling. Our simulations show that the latter has

a negligible effect on array reference patterns and cache misses, so we only present figures

for 4 and 7.

Results of the simulations are contained in Appendix C. Each table shows the percentage

of array references (loads) that cause cache misses for the optimizations described in Section

2 and presented in Appendix A.1. Symbols are applied in the same fashion as in the tables

in Appendix B.I: the larger the ring (o), the fewer the cache misses.

We expect a smaller percentage of cache misses to result in faster code. If an optimization

results in fewer cache misses and higher performance than another, we say there is a positive

correlation betweensimulation and measuredperformance. In the following we focus on
large changesin cachemiss rate or performance,and, asbefore, limit our discussionto the
morestriking examples.Our overall finding is that sometimescachemissrates do correlate
positively with performance,and sometimesthey do not. In other words,evena sharpened
attention to cachebehaviordoesnot result in achievingportable performance.

MIPS R5000 (Table 28). Cachemissesand performanceare relatively well correlated.
Forinstance,performanceincreasesand cachemissesdecreasefor zloop-d,3, 7and yloop-3, 7,3.

Cache behavior also explains the increase in performance with larger grid sizes for xloop, and

the mixed results with larger sizes for yloop and decreased performance with larger sizes for

zloop (except for zloop-7). On the other hand, cache behavior does not explain everything,

such as the dramatic increase in performance from yloop-3 to yloop-_, for the smaller two

problems.

We note that the number of cache misses for the z-factor is slashed in three--somewhat

unexpectedly--by using the natural loop ordering. This is reflected in a better performance.

MIPS R8000 (Table 29). This processor features a very small miss rate (less than 1%),

due to the large size of the L2 cache. The large performance differences between the factors,

particularly for the smaller grid sizes, is not explained by differences in L2 cache misses. A

more likely explanation is that for problems that fit inside L2 cache, it is L1 cache misses

that determine performance.

MIPS R10000 (Table 30). For small grid sizes we observe no correlation, and in fact

for a grid size of 32 there is a negative correlation. For the larger sizes, modest changes in

performance are not reflected in the cache miss rate.

IBM POWER2 (Table 31). Generally speaking, variations in cache misses and per-

formance are relatively small, though the two are not well correlated. Where there is the

largest variation in cache miss rate (zloop), performance correlates negatively. Conversely,

the virtually uniform distribution of cache miss rates for zloop is accompanied by the largest

variations in measured performance.

INTEL PENTIUMPRO 200 MHz (Table 32). For the largest problem size correlation

appears quite good--fairly uniform performance for the x- and y-factors, and widely varying

performance with high correlation for the z-factor. For the smallest case, again we see

uniformity in the x- and y-factors, but note that cache misses are uniform for the z-factor,

while performance shows the same dramatic swings as for the large grid size. This casts

doubt upon the significance of the z-factor correlation for the largest size.

DEC ALPHA EV4 (Table 33). Cache misses fail to predict the large performance vari-

ation within the x-factor, and are only moderately correlated elsewhere.

DEC ALPHA EV5 (Table 34). A reduction in cache misses of up to a factor of 3 for the

larger grids of the z-factor by switching to the natural loop ordering has no or no positive

effect on the performance. All factors show widely varying performance figures for virtually

identical numbers of cache misses (grid size 16).

SUN ULTRASPARC I (Table 35). Performance of the UltraSparc for small grids (16) varies

significantly, especially for the x-factor, although the problem fits entirely in the cache, and

no misses occur (see Table 35). For larger grids the number of cache misses varies significantly

for the z-factor, but this is not correlated with performance.

HEWLETT-PACKARD PA-RISC (Table 36) . The most salient feature of the simulated

cache behavior of the PA-RISC is the strong negative correlation between measured perfor-

10

manceand number of cachemissesof the z-factor for large grids.

In summary, the simulated cache behavior for the processors studied correlates poorly

with the actually observed performance, confirming the conclusion from the previous section

that simple rules taking into account a hierarchical memory structure are not sufficient to

ensure portable performance. Most strikingly, the smaller grid sizes fit entirely in the L2

caches of some processors, but observed performances for the various optimizations differ

substantially. Less dramatic, but equally vexing, is the negative correlation between mea-

sured performance and calculated cache misses for the y-factors on the PentiumPro, DEC

Alpha, Sun UltraSparc and IBM POWER2. Finally, we also observe that measured per-

formances of optimizations 1, 2, and 3 for all factors vary significantly, although the array

reference patterns for these code variations are identical.

It can be argued that these discrepancies are due to the limitations of the simulator--

perhaps better termed a data locality estimator--and that better correlations can be ob-

tained by incorporating more detailed characteristics of the particular machines. But we

are interested in producing portable code, and introducing even more information into the

program construction will make this task virtually impossible. In addition, the validity of

the cache simulator is corroborated by program run-time statistics obtained from hardware

performance counters on the IBM POWER2 and the MIPS R10000. Although on both ma-

chines the numbers of sinmlated cache misses overpredict the actually measured numbers,

the correlation between the two is higher than 957o.

We also observe that there is significant--and nontrivial--dependence of the processor

performance on the problem size, which is generally not known at compile time. We do

note that on several processors the unexpected beneficial effect of using the natural loop

ordering for the z-factor is borne out by the simulations. However, the data locality of the

simple pieces of code investigated in this paper is generally a rather complex function of loop

organization, problem size, and cache structure, even if only very few parameters are used

to describe the cache.

6 Performance details. Clearly, it is impossible to explain the performance of the kernel

codes by only examining the source text, even when our intuition about data locality has

been improved through the use of a cache simulator. In order to understand better why

this is, and to gain appreciation of the factors that do govern performance, we examine the

generated assembly code for some of the processors in more detail. Through this detailed

analysis we are able to explain almost all significant variations in performance. While it

is gratifying to know that much can be explained, the reliance on compiler- and processor-

specific details means that the goal of portable performance cannot be achieved.

The selected processors are the MIPS RS000, IBM POWER2, and DEC Alpha EV4.

Each has 32 integer and 32 floating-point general-purpose registers, plus a small number of

special-purpose registers. The MIPS and IBM processors feature a combined floating-point

multiply/add (madd) instruction, which is missing from the DEC Alpha instruction set. All

kernel code assignments written as a combination of an addition (or subtraction) and a mul-

tiplication are correctly recognized as madds by the MIPS and IBM compilers. In addition,

the IBM processor is capable of loading or storing two double-precision numbers (occupying

four 32-bit words, hence the names quad load and quad store) in a single instruction. The

11

memory buses of the MIPS and DEC Alpha processors, in contrast, are only 64 bits wide,

and do not accommodate quad loads or stores. Finally, the IBM instruction set features

an address mode (called the update mode) that allows simultaneous update and use of the

contents of a register. This mode, which saves on the number of register manipulations, is

absent from the MIPS and DEC Alpha instruction sets.

In Tables 3, 4, and 5, we summarize numerically the characteristics of the generated

assembly codes. The quantities load and store refer to the number of memory operations

carried out for each point of the grid. For the POWER2 we indicate, in parentheses, how

many of the loads and stores are quad operations. For the EV4 we show, also in parentheses,

how many of the loads and stores are between registers and stack variables (as opposed

to array variables in main memory). Since stack variables are only few and, presumably,

remain in cache for the duration of the kernel code execution, such loads and stores are less

costly than those of array variables. The RS000 and POWER2 inner loops have no stack

loads or stores. Instr signifies the total number of assembly instructions per grid point,

and sep indicates the separation, or delay, between issuing the computationally expensive

division instruction and using the result. A sep(aration) of 1 means that the instruction

immediately following the division makes use of the result. This delay can be important

when the processor allows other instructions following the division to be carried out before

the division completes. Note that we do not take into account that instructions may have

different lengths (and, consequently, different costs), depending on their address mode. For

the determination of the above four numerical parameters we ignore any operations that

are not in the inner loop. We note that none of the compilers investigated recognizes the

possibility of postponing writing array elements back to memory (storing) until operations

on them have been completed (see Section 7).

Table 3: MIPS RS000

x-1
x-2

x-3

x-4
x-5

y-1
y-2
y-3
y-4
y-5
y-6
y-7
z-1

z-2

z-3

z-4

z-5

z-6

z-7

load store instr sep
32 15 100 2
32 15 100 2
13 15 46 30
13 15 47 31
32 15 66 33
32 15 79 40
32 15 79 40
18 15 51 60
17 15 51 61
32 15 68 15
32 15 68 15
18 15 51 61

3
59
62
15
15
62

Table 4: IBM POWER2

load store instr sep
x-1
x-2
x-3

x-4

x-5

y-1
y-2
y-3
y-4
y-5
y-6
y-7
z-1

z-2

z-3

z-4

z-5

z-6

z-7

30(2 ") 15 72 22
30(2 a) 15 70 18
27(5 a) 15 59 24
13(7 a) 8(7 a) 37 8
13(7 a) 8(7 a) 37 19

32 15 74 17
32 15 76 13
32 15 64 21

22(6 a) 13(2a)j 52 12
22(6 a) 13(2 a) 51 29
17(3 a) 13(2 a) 50 17
20(6 a) 13(2 a) 50 5

13
22
12
29
34
5

"quad load/store

Table 5: DEC Alpha EV4

x-1
x-2
x-3

x-4
x-5

y-1
y-2
y-3
y-4
y-5
y-6
y-7
z-1

z-2

z-3

z-4

z-5

z-6

z-7

load store instr sep
37(4 a) 21(6_)! 128 6
37(4 a) 21(6a)i 128 6

27 15 80 13
17 15 62 11
17 15 62 33
30 15 126 3
30 15 126 3
30 15 96 19
24 15 75 4
24 15 70 31
23 15 69 29
23 15 74 4

3
19
4

31
29
4

_stack load/store

12

MIPS R8000. The MIPS compiler uses loop replication and pipelining as the most

important vehicle for code optimization. This technique has the potential to reduce the

number of loads (through reuse among different iterations), and to increase the division

separation (through reordering of statements), at the cost of pipeline overhead and the danger

of register spill due to the replication. Only innermost loops are pipelined, and only if they

are of sufficient depth to justify the overhead. This disqualifies the small m-loops, which

need to be unrolled before pipelining can proceed. The MIPS compiler automatically unrolls

the first m-loop of the loop body (i.e. rhs(i,j,k,m) = facl*rhs(i,j,k,m), m=1,2,3), but

leaves the other two unchanged. The recursion in i for the x-factor prevents the inner

loop from being split without loop reordering, and no pipelining is performed at all. This

explains the relatively poor performance of xloop-l,2. Once all m-loops are unrolled by hand

(xloop-3), the inner loop is replicated three times (in the i-direction) and fully pipelined,

leading to a greatly reduced number of loads and instructions, and a substantial increase of

the division separation. The resultant performance improvement is roughly a factor of two

for all grid sizes. Changing the position of the component index (xloop-4) has hardly any

effect on the structure of the compiled code. Performance also remains effectively the same.

Unrolling the i-loop by a factor of two (xloop-5) renders the loop body too large for the

compiler to optimize, and no pipelining is done. The number of loads goes up again, but the

absence of m-loop overhead and the programmer-induced increased division separation keep

the performance from deteriorating precipitously.

In case of the y-factor, the compiler again fails to unroll the second and third m-loops

(yloop-l,2). But because the inner grid loop runs over points in the i-direction and the

recursion is in the j-direction, the inner loop can be split into four independent loops, each

of which is optimized separately. The two that only contain an m-loop are subjected to loop

inversion, so that the innermost loops have i as the running variable. This allows these loops

to be replicated (in the i-direction) and pipelined, which increases the division separation.

Moreover, m-loop overhead is moved out of the inner loop, leading to a noticeable reduction

of the number of operations compared to xloop-l,2. As a consequence, yloop-l,2 perform

significantly better than their x-factor counterparts. The two inner loops that do not contain

m-loops are replicated and pipelined directly. This yields no additional gain, since splitting

the i-loop prevents reuse among and within iterations; the total number of loads is the same

as for the x-factor. Unrolling the m-loops by hand (yloop-3) enables the compiler to replicate

and pipeline the entire inner loop directly, further increasing the division separation. The

number of loads (and hence the number of instructions) is sharply decreased because of reuse

of lhs array elements within the single loop body. Notice that the division separation is much

larger than for the corresponding x-factor code. This is because the result of the division is

now not needed by the next iteration of the inner loop. As a consequence, performance is

improved substantially. Changing the position of the component index (yloop-4) leaves the

structure of the compiled code and the performance again virtually unchanged. When the

inner loop is unrolled by hand by a factor of 2 (yloop-5), the loop body is again too complex

for the compiler to optimize, and no pipelining is done at all; strangely, even though the

expensive divisions are scheduled together at the top of the inner loop by the programmer,

creating the opportunity to increase division separation for the second iteration, the compiler

moves the second division down to the start of its 'own' iteration. This reordering limits

the division separation and degrades performance to a level well below that of xloop-5.

13

Inverting the loops to reflect the natural loop order (yloop-6,7) is undone by the compiler,
which recaststhesekernelcodesto exhibit the canonicalloop order. Consequently, structure

and performance of these compiled codes are identical to those of yloop-5,4, respectively.

The same transformations applied to yloop-l,2 could have been used to optimize zloop-

1,2, but are not found by the compiler. Instead, the j-loop is broken into only three indepen-

dent parts. The first contains the expensive division as well as a non-expanded m-loop. This

combination of instructions inhibits loop inversion and pipelining. Although the other two

loops are again replicated and fully pipelined, the poor optimization of the first loop leads

to a relatively large number of instructions and a very small division separation, thus ex-

plaining the bad performance of these kernel codes. Unrolling the m-loops by hand (zloop-3)

enables the full range of optimizations applied also to yloop-3, with concomitant perfor-

mance improvement. As before, moving the component index (zloop-4) affects neither the

structure of the compiled code, nor its performance. As in yloop-5, the unrolled loop body

of zloop-5 is too large to pipeline, and again the compiler migrates the division operation,

to the detriment of the division separation. When the natural loop order is adopted, the

compiler again attempts to reduce stride by recasting the loop nest, but instead of reverting

to the canonical loop order (i.e. k for outer, j for middle, and i for innner loop running

indices), the resulting loop nest is j-k-i. Apparently, this does not affect performance much.

Performance of the fat, non-pipelined zloop-6 code is on a par with that of yloop-6. Zloop-7

and yloop-7 compare similarly.

IBM POWER2. Unlike the Cray (see below) and MIPS compilers, the IBM compiler

always recognizes and expands the short m-loops to avoid unnecessary branch instructions.

It also pipelines each inner loop to reduce memory operations and increase division separa-

tion. Once the m-loops are unrolled by hand (x,y, zloop-3), the compiler has an easier job

recognizing access and dependency patterns, and for all three factors the number of instruc-

tions decreases while the division separation goes up. Performance improvement is greatest

for the x-factor, since now the compiler also recognizes the possibility of utilizing array ele-

ments adjacent in memory, and reduces the number of load operations by issuing some quad

loads. Increased locality of memory reference is obtained by moving the component index

(x,y, zloop-4), which enables quad loads as well as quad stores for all factors, thus reducing

the number of memory operations as well as the total instruction count. However, although

the code is still fully pipelined, for some reason the compiler now fails to unroll the inner

loop (so far, each was unrolled automatically by a factor of two in the i-direction), which

limits the division separation. As a result, the net performance improves only noticeably

for xloop-4, not y, zloop-4, because the x-factor experiences the sharpest reduction of the

number of memory operations due to quad load/stores. Unrolling the inner loop by hand

by a factor of two (x,y, zloop-5) restores the division separation for all three factors while

leaving other parameters virtually unchanged, and performance improves commensurately.

Reverting to the natural loop order reduces the number of loads for the y-factor, but the

division separation also decreases, so it is not clear why performance of yloop-6 improves. For

the z-factor the number of loads as well as the division separation are affected favorably by

the natural loop order, and the number of cache misses is reduced by a factor of three for the

larger grid sizes, which explains the improved performance of zloop-6. Undoing the partial

unrolling of the i-loop leads to a substantial reduction of the division separation, and, for the

y-factor, also to an increase in the number of loads; as expected, the performance of y, zloop-7

14

deteriorates. Overall, performanceof the x-factor on the POWER2 is significantly better

than of the y- and z-factors. Data locality alone does not provide sufficient explanation.

What matters also is the type of locality, namely adjacency.

DEC ALPHA EV4. Unlike the MIPS and IBM compilers, the Cray compiler never

replicates or pipelines the kernel code loops automatically, and hence has fairly little control

over division separation and number of memory operations. Xloop-l,2, which yield virtually

identical assembly code, fare poorest. Like MIPS, the Cray compiler expands the first m-

loop, but leaves the others untouched. Because the inner grid loop contains a recurrence, it

cannot be split, and is left virtually unchanged by the compiler. Many register spills occur,

and even the loop constant 3, used for the short m-loops, is read from the stack several

times. In addition, there are redundant loads of unchanged values. Apparently, the compiler

made only very minor attempts at optimization, resulting in large numbers of instructions

and memory operations, small division separation, and bad performance. When the m-loops

are unrolled by hand (xloop-3), loop overhead is cut, also leaving more registers available,

so fewer spills occur. Some reordering of statements takes place, and the compiler issues

loads further ahead, which leaves more time for data to be fetched and also increases the

division separation. Moving the component index (xloop-4), however, yields a much bigger

performance improvement, which is due to the large reduction of the number of loads and

the total number of instructions. The reason for this is that address calculations are now a

lot simpler. When the component index is the last array index, 8 integer registers are used to

keep track of the 5 elements of lhs and 3 of rhs at each grid point, since these are separated

by large strides, the sizes of which are unknown at compile time. These registers need to

be updated every iteration (recall that the EV4 lacks an update address mode), resulting

in significant overhead. Moreover, due to the large number of registers used, bookkeeping

is relatively complicated, and the compiler issues several redundant loads. By contrast,

when the component index is first, only two integer registers are required to keep track of

all local elements of lhs and rhs. All other addresses are obtained using small (24 or 40

bytes), fixed-size offsets. Moreover, due to the simple structure of the resulting code, the

compiler is able to eliminate all redundant loads, which leads to a very streamlined, short

program. Partially unrolling the j-loop (xloop-5) leaves that structure intact and increases

the separation division, but the number of cache misses also increases, and performance goes

down.

Both yloop-l,2 and zloopl,2 permit splitting the inner i-loop, which the compiler does

correctly. It also employs loop inversion, so that the m-loops are no longer in the inner loop,

and loop overhead is cut. The smaller number of instructions and substantially reduced

number of loads makes the y-factor perform more than 50% better than the x-factor. The

z-factor sheds fewer loads, and its performance improves less, compared to the x-factor.

When the m-loop is expanded by hand (y, zloop-3), the number of memory operations, total

number of instructions, and division separation all improve or stay the same, but performance

degrades nonetheless. True performance improvement is brought about by the change of

position of the component index (y, zloop-4), which results in a sizeable reduction of number

of loads and total instruction count. Despite the fact that the cache miss rate goes up and

the division separation goes down, performance improves. Apparently, either divisions are

relatively cheap on the EV4, or delayed instruction completion is not possible, as partially

unrolling the i-loop (y, zloop-5) keeps the structure and properties of the assembly code

15

the same,savea substantial increaseof the division separation, but performancedeclines
somewhat. Adopting the natural loop order (y,zloop-6) cuts the cache miss rate in half,

improving performance substantially. Finally, undoing the partial unrolling (y, zloop- 7) makes

the cache miss rate grow slightly and decreases the division separation, neither of which

appears significant enough to explain the fairly steep drop in performance.

7 Alternate optimizations. The optimizations of the kernel code presented in Section 2

affect mainly loop structure, but leave the number of array references unchanged. Here we

present an alternate optimization strategy, due to Taft [9], that aims to reduce the number

of array references. It is based on the following observations. In every iteration three

successive rows of the pentadiagonal matrix and the corresponding three triplets of right

hand side values are read and modified. Several of the matrix elements are accessed multiple

times. When the inner loop corresponds to the line solve direction (natural loop order), the

first two of the three rows accessed in the next iteration coincide with the current triplet.

The number of array references can therefore be reduced by storing triplets of rows in a

'moving window' of scalar variables. After the window has been initialized at the beginning

of the grid line, all that is required to move the window between iterations is to read one new

matrix row from memory and store back the elements of the first row that have changed.

If enough registers are available, all operations on the window of scalars can take place

entirely in registers. If not, the spilled scalars will reside in fixed positions on the stack, and

all window data will likely remain in cache; no new reads from main memory are necessary

after each new matrix row has been stored in scalar variables. Good compilers already

recognize some reuse of array elements within a single iteration and store them in registers,

but fairly substantial transformations are required to take full advantage of reuse across

several iterations. This is evidenced by the complexity of source code employing the scalar

window (Appendix A.2).

Performance results (Mflops/s) are tabulated in Appendix B.2. Since the scalar win-

dow applies only to the natural loop ordering, optimizations 1-5 for yloop and zloop are

not displayed. We also omit optimizations xloop-l,2, so that the entire inner loop can be

written in scalar operations (no m-index loops). We observe several appreciable performance

improvements (up to 20%) over the kernel codes, especially for the x-factor on the PA-RISC

(large grids) and the RS000, the y-factor on the PA-RISC (large grids), the UltraSparc (small

grids) and the POWER2, and the z-factor on the PA-RISC (medium grids), the UltraSparc

(small grids), and the POWER2 and EV5. But there are also dramatic performance degra-

dations (up to 50%) for the x-factor on the EV4, the y-factor on the R8000 and EV5, and

the z-factor on the R8000 and R10000 (large grids). Consequently, this code variation again

cannot be recommended as a portable optimization technique for cache-based systems. As

expected, the vector machines do not benefit at all from the scalar window optimizations.

8 Conclusions. We have studied the behavior of variations of pieces of scientific computing

software on a wide range of current cache-based processors. Seemingly reasonable source

code optimizations often did not yield higher speed, even when cache simulations indicated

they would. Moreover, the same "optimization" often had very different consequences for

performance on different procesors.

Our goal was to find out whether it is feasible to achieve portable performance on com-

16

puterswith hierarchicalmemorysystems.Our conclusionis that it is not. We found instead
that many performancefluctuations could be understoodonly by examining assemblycode
in detail, and ultimately these fluctuations were related to idiosyncrosiesof architectures
and compilers.

Tuning codesfor high performanceoncommercialcache-basedprocessorsavailabletoday
is a processthat requiresso muchknowledgeand information about the entire configuration
of userprogram, problem parameters,systemsoftware, and hardware organization, that it
is in generaldifficult or impossible to write good, portable cachecode for general scien-
tific applications. By this we mean that it is not possibleto tell whether a program will
performwell by studying the sourcecodeand a few high-levelparametersof the systemun-
der consideration. This contrastssharply with our experienceson vector processors,where
the well-understoodeffectsof vectorizability, regular stride, and long vector length virtually
completelygovernperformance.We note also that compilersare often not as sophisticated
and mature as is commonly believed. Many still fail to perform automatically even trivial
optimizations.

Genericoptimization strategiesdesignedto take advantageof cacheby increasingdata
locality do not alone yield high performance. Other factors, such as software pipelining,

compiler structure and maturity, (relative) instruction cost, number of registers, and special

memory and address instructions, need to be considered as well when designing efficient

codes, but this will hamper portability of codes between architectures.

References

[1] D.H. Bailey, "Unfavorable Strides in Cache Memory Systems," Scientific Programming,

vol. 4 pp. 53-58, 1995

[2] D.H. Bailey, T. Harris, W.C. Saphir, R.F. Van der Wijngaart, A. Woo, M. Yarrow,
"The NAS Parallel Benchmarks 2.0," NAS Technical Report NAS-95-020, NASA Ames

Research Center, Moffett Field, CA, 1995

[3] J. Bilmes, K. Asanovi_, C-W. Chin, J. Demmel, "Optimizing matrix multiply using

PHiPAC: a portable, high-performance, ANSI C coding methodology," Proc. 11 th ACM

Intl. Conf. on Super(:omputing, Vienna, Austria, July 1997

[4] V.K. Decyk, S.R. Karmesin, A. de Boer, P.C. Liewer, "Optimization of particle-in-cell
codes on reduced instruction set computer processors," Computers in Physics, vol. 10,

no. 3, 1996

[5] A.R. Lebeck, D.A. Wood, "Cache profiling and the SPEC benchmarks: a case study,"

IEEE Computer, Vol. 27, No. 10, October 1994

[6] M. Martonosi, "Analyzing and tuning memory performance in sequential and paral-

lel programs," Ph.D. Thesis, Computer Science Dept., Stanford Univ., Stanford, CA,

December 1993

[7] V.S. Pai, P. Ranganathan, S.V. Adve, "RSIM Reference Manual, Version 1.0," Technical

Report 9705, Dept. of Electrical and Computer Eng., Rice Univ., Houston, TX, August

1997

17

[8]

[9]

[lO]

M. Rosenblum, E. Bugnion, S. Devine, S.A. Herrod, "Using the SimOS machine sim-

ulator to study complex computer systems," A CM Trans. on Modeling and Computer

Simulation, Vol. 7, No. 1, January 1997

J. Taft, "Private communication," April 1997

E. Van der Deijl, G. Kanbier, O. Temam, E.D. Granston, "A cache visualization tool,"

IEEE Computer, Vol. 30, No. 7, July 1997

Appendix A: Source codes.

Source listings of the SP solver fragments used in the performance tests; only the forward

elimination parts of the penta-diagonal line solvers are used. For each of the three factors

to be inverted in the ADI scheme (corresponding to the x-, y-, and z-directions), the same

optimizations are performed for corresponding suffixes. For example, xloop-3, yloop-3 and

zloop-3 all unroll inner loops of length three. Italic typeface is used to indicate which parts

of the code fragments are affected by the current optimization.

A.I: Kernel codes

All code fragments use standard (indexed) array references throughout, xloop-1, yloop-1 and

zloop-1 are the actual loops used in NPB 2. Here we only show xloop-1 through xloop-5,

yloop-6, and yloop-7. The other code fragments are easily inferred.

xloop-l:NPB 2.2 code

do 2 k=l,nz

do 2 j=l,ny

do 2 i=l,nx-2

il=i+l

i2=i+2

facl =l.dO/lhs(i,j,k,3)

lhs(i,j,k,4)=facl*lhs(i,j,k,4)

lhs(i,j,k,5)=facl*lhs(i,j,k,5)

do 5 m=l,3

rhs(i,j,k,m)=facl*rhs(i,j,k,m)

5 continue

lhs(il,j,k,3)=lhs(il,j,k,3)-

> lhs(il,j,k,2)*lhs(i,j,k,4)

lhs(il,j,k,4)=lhs(il,j,k,4)-

> lhs(il,j,k,2)*lhs(i,j,k,5)

do 8 m=l,3

rhs(il,j,k,m)=rhs(il,j,k,m)-

lhs(il,j,k,2)*rhs(i,j,k,m)

continue

lhs(i2,j,k,2)=lhs(i2,j,k,2)-

> lhs(i2,j,k,l)*lhs(i,j,k,4)

lhs(i2,j,k,3)=lhs(i2,j,k,3)-

> lhs(i2,j,k,l)*lhs(i,j,k,5)

do 2 m=l,3

rhs(i2,j,k,m)=rhs(i2,j,k,m)-

> lhs(i2,j,k,l)*rhs(i,j,k,m)

>

8

2 continue

xloop-2: remove auxiliary variables for incre-

mented indices

5

do 2 k=l,nz

do 2 j=l,ny

do 2 i=l,nx-2

facl =l.d0/lhs(i,j,k,3)

lhs(i,j,k,4)=facl*lhs(i,j,k,4)

lhs(i,j,k,5)=facl*lhs(i,j,k,5)

do 5 m=l,3

rhs(i,j,k,m)=facl*rhs(i,j,k,m)

continue

lhs(i+l,j,k,3)=lhs(i+l,j,k,3)-

> lhs(i+l,j,k,2)*lhs(i,j,k,4)

lhs(i+l,j,k,4)=lhs(i+l,j,k,4)-

> lhs(i+l,j ,k, 2)*lhs (i ,j ,k,5)

xloop-3: unrolismallinnerloopsoflength 3

do 2 k=l,nz

do 2 j=l,ny

do 2 i=l,nx-2

facl =l.d0/lhs(i,j,k,3)

lhs(i,j,k,4)=facl*lhs(i,j,k,4)

lhs(i,j,k,5)=facl*lhs(i,j,k,5)

rhs Oj, k, 1) =fac l *rhs O,j,k, 1)

18

rhs(i,j,k,2)=facl *rhs(i,j,k,2)

rhs(i,j,k, 3) =fac l _'rhs (i,j, k, 3)

lhs(i+l,j,k,3)=lhs(i+l,j ,k,3)-

> lhs(i+l,j,k,2)*lhs(i,j ,k,4)

lhs (i+ 1, j, k, 4) =lhs (i+ 1, j, k, 4) -

> lhs(i+l,j,k,2)*lhs(i,j,k,5)

rhs(i+ l,j,k,1)=rhs(i+ l,j,k,1)-

lhs(i+ l,j,k,2) *rhs(i,j,k, 1)

rhs(i + l,j,k,2)=rhsO + l,j,k,2)-

lhs(i+ l,j,k,2) _'rhs(i,j,k,2)

rhs(i + l,j,k,3)=rhsO + l,j,k,3)-

lhs(i+ l,j,k,2) *rhs(i,j,k,3)

_oop-4: move componentindexofrhs/lhs to/font

do 2 k=l,nz

do 2 j=l,ny

do 2 i=l,nx-2

facl =l.dO/lhs(3, i,j,k)

lhs(_,i,j,k)=facl*lhs(_,i,j,k)

lhs(5, i,j,k)=facl*lhs(5,i,j,k)

rhs(1,i,j,k)=facl*rhs(1,i,j,k)

rhs(2, i,j,k)=facl*rhs(2, i,j,k)

xloop-5: unrollj-loopto a level o]2

do 2 k=l,nz

do 2 j=l,ny, 2

do 2 i=l,nx-2

facl =l.dO/lhs(3,i,j,k)

fac2 =l.dO/lhs(3,i,j+l,k)

lhs(4,i,j,k)=facl*lhs(4,i,j,k)

lhs(5,i,j,k)=facl*lhs(5,i,j,k)

rhs(l,i,j,k)=facl*rhs(l,i,j,k)

rhs(2,i,j,k)=facl*rhs(2,i,j,k)

lhs(4,i,j+l,k)=fac2*lhs(4,i,j+l,k)

lhs(5,i,j+l,k)=fac2*lhs(5,i,j+l,k)

rhs(1,i,j+l,k)=fac2*rhs(1,i,j+l,k)

rhs(2,i,j+l,k)=fac2*rhs(2,i,j+l,k)

yloop-6:naturallooporde5 i-loopunrolledtolevel2

do 2 k=l,nz

do 2 i=l,nx,2

do 2 j=l,ny-2

facl =l.dO/lhs(3,i,j,k)

fac2 =l.dO/lhs(3,i+l,j,k)

lhs(4,i,j,k)=facl*lhs(4,i,j,k)

lhs(5,i,j,k)=facl*lhs(5,i,j,k)

rhs(l,i,j,k)=facl*rhs(l,i,j,k)

rhs(2,i,j,k)=facl*rhs(2,i,j,k)

lhs(4,i+l,j ,k)=fac2*lhs(4, i+l, j ,k)

lhs(5,i+l,j ,k)=fac2*lhs(5,i+l,j,k)

rhs(l,i+l,j,k)=fac2*rhs(l,i+l,j,k)

rhs(2,i+l,j,k)=fac2*rhs(2,i+l,j,k)

yloop-_ naturalloop order, rolled-up i-loop

do 2 k=l,nz

do 2 i=l,nx

do 2 j=l,ny-2

facl =l.dO/lhs(3,i,j,k)

lhs(4,i,j,k)=facl*lhs(4,i,j,k)

lhs(5,i,j,k)=facl*lhs(5,i,j,k)

rhs(1,i,j,k)=facl*rhs(1,i,j,k)

rhs(2,i,j,k)=facl*rhs(2,i,j,k)

A.2: Scalar window codes.

Only optimization z-7 (natural loop order) is shown. The code fragment employs a window

of scalars that holds three rows of the pentadiagonal matrix and the corresponding three

triplets of right hand side values.

zloop-_ naturallooporder, rolled-up i-loop

do 2 j=l,ny

do 2 i=l,nx

!initialize scalar window (3 matrix rows

lhs3 = lhs(3

lhs4 = lhs(4

lhs5 = lhs(5

rhsl = rhs(1

rhs2 = rhs(2

rhs3 = rhs(3

i,j ,1)

i,j ,1)

i,j ,1)

i,j ,1)

i,j ,1)

i,j ,1)

lhs2kpl = lhs(2,i,j,2)

lhs3kpl

lhs4kpl

lhs5kpl

rhslkpl =

rhs2kpl =

rhs3kpl =

lhslkp2 =

lhs2kp2 =

lhs3kp2 =

lhs4kp2 =

lhsSkp2 =

= lhs(3,i,j.2)

= lhs(4,i,j.2)

= lhs(S,i,j.2)

rhs(1,i j.2)

rhs(2,i j 2)

rhs(3,i j 2)

lhs(l,i j 3)

lhs(2,i j 3)

lhs(3,i j 3)

lhs(4,i,j,3)

lhs(5,i,j,3)

19

rhslkp2 = rhs(l,i,j,3)

rhs2kp2 = rhs(2,i,j,3)

rhs3kp2 = rhs(3,i,j,3)

!start actual iterations

do 2 k=l, nz-2

facl = l.dO/lhs3

lhs4 = facl*lhs4

lhs5 = facl*lhs5

rhsl = facl_rhsl

rhs2 = facl*rhs2

rhs3 = facl*rhs3

lhs3kpl = lhs3kpl-lhs2kpl*lhs4

lhs4kpl = lhs4kpl-lhs2kpl*lhs5

rhslkpl = rhslkpl-lhs2kpl*rhsl

rhs2kpl = rhs2kpl-lhs2kpl*rhs2

rhs3kpl = rhs3kpl-lhs2kpl*rhs3

lhs2kp2 = lhs2kp2-1hslkp2*lhs4

lhs3kp2 = lhs3kp2-1hslkp2*lhs5

rhslkp2 = rhslkp2-1hslkp2*rhsl

rhs2kp2 = rhs2kp2-1hslkp2*rhs2

rhs3kp2 = rhs3kp2-1hslkp2*rhs3

!write 1 matrix row (updated elmts only)

lhs(4,i,j,k) = lhs4

lhs(5,i,j,k) = lhs5

rhs(l,i,j,k) = rhsl

rhs(2,i,j,k) = rhs2

rhs(3,i,j,k) = rhs3

!move window of scalar temporaries

lhs3 = lhs3kpl

lhs4 = lhs4kpl

lhs5 = lhs5kpl

rhsl = rhslkpl

rhs2 = rhs2kpl

rhs3 = rhs3kpl

lhs2kpl = lhs2kp2

lhs3kpl = lhs3kp2

lhs4kpl = lhs4kp2

lhs5kpl = lhs5kp2

rhslkpl = rhslkp2

rhs2kpl = rhs2kp2

rhs3kpl = rhs3kp2

!read new matrix row

lhslkp2 = lhs(l,i,j,k+3)

lhs2kp2

lhs3kp2

lhs4kp2

lhs5kp2

rhslkp2

rhs2kp2

rhs3kp2

2 continue

= lhs(2,i,j,k+3)

= lhs(3,i,j,k+3)

= lhs(4,i,j,k+3)

= lhs(5,i,j,k+3)

= rhs(l,i,j,k+3)

= rhs(2,i,j,k+3)

= rhs(3,i,j,k+3)

20

Appendix B: Measured computational performance (Mflops/s).

B.I: Kernel code performance.

Table 6: MIPS R5000

x-1
x-2
x-3

x-4

x-5

y-1
y-2
y-3

y-4
y-5
y-6
y-7
z-1

z-2

z-3

z-4

z-5

z-6

z-7

grid size

16 32 64 80

8.34 • 8.70. 8.86 * 8.71 •
8.73. 9.10 • 9.25 • 9.09 •
14.0o 15.2o 15.8o 16.3o
17.20 18.30! 18.90 19.00
17.50 18.70 19.30 19.50
7.95. 8.20 • 8.30 • 7.05 •

8.09 • 8.34 • 8.42 * 7.15 *
11.8. 12.5o 12.8. 9.87*
15.00116.00 16.50 16.50
15.70 17.00 17.60 17.70
15.80 17.10 16.30 16.60
15.20 16.40 14.9o 15.6o

6.00 •
6.01 •
1.29-

7.02 •
11.60
10.1o

Table 7: MIPS R8000

16
23.0.
23.0 •

51.8O
48.5O
46.3o
49.8•
49.8•
83.10
82.7O
28.5 -

28.5 •
82.7O

grid size

32 64 80
23.2. i17.8• 17.8.

23.2. 17.8 • 17.8 •
53.90 29.50 29.50
49.70 28.60 28.50
47.0o 27.40 27.40
62.5* 30.0. 30.4.

62.6. 30.1o 30.5o
95.60 38.90 38.80
95.1039.10 39.20
29.0 • 20.6 • 20.6 •
29.0 • 20.6 • 20.6 •
95.10 39.10 39.20

20.9 •
i36.50
39.00
20.5 •
20.5 •

39.00

Table 8: MIPS R10000

grid size

16 32 64 80

x-1 55.9. 59.7. 49.6- 48.8.
x-2 55.8. 59.7. 49.6. 48.7.
x-3 86.1- 89.5- 70.80 68.20

x-4 127.O 131.O 60.1o 60.6o
x-5 116.o 116.oi63.4o 63.90

y-1_85.4o 88.0. 63.4- 61.90

y-2 85.3o 88.0. 63.5- 61.70
y-3 92.2o 97.2o 81.00 61.40
y-4 107.O 113.O 69.0o 61.20
y-5 89.7o 91.5o 52.2- 52.4o

y-6 89.7o 90.4o 52.2. i52.4o
y-7 108.O 114.O 69.1o 61.80
z-1 51.5o
z-2 il.7o

z-3

z-4 51.5o
z-5 41.4-

z-6 41.3.
z-7 51.4o

Table 9: IBM POWER2

grid size

16 32 64 80

x-1 34.3 • 33.4. 33.7- 34.3 *
x-2 35.0. 34.1. 34.2* 35.2*
x-3 40.5. 39.2. 39.6. 40.9.
x-4 48.9. 49.7. 50.3. 50.4.
x-5!69.00 65.90 67.30 70.00

y-1 32.8o 32.6o 33.0. 33.4o
y-2 32.0. 31.9. 32.3- 32.7.

y-3 36.4o 36.0o 36.5o 36.9o
y-4 35.5o 34.7o 35.1o 35.1o
y-5 39.40 38.80!39.00 39.10

y-6 43.00 41.50 42.10 42.20
y-7 41.00 i40.40 40.90 40.90
z-1 31.6o

z-2 31.3o
z-3 34.4o
z-4 29.3-
z-5 11.9o

z-6

z-7 32.5o

Table 10: PentiumPro

x-1
x-2

x-3

x-4
x-5

y-1
y-2
y-3
y-4

y-5

y-7
z-1
z-2

z-3

z-4
z-5

z-6

z-7

16
i16.0o
16.5.
21.40

22.7O
21.80
17.1-
17.1.

21.10
21.90
22.0O
21.90
21.30

grid size

32 64 80
16.0- 16.4. 16.5.
16.5- 16.9- 17.0.
21.40 22.10 22.40
22.60 23.50 23.50
21.80]22.40 22.40
17.1. 17.0. 17.0-
17.1. 17.0. 17.0o
21.10 21.10 21.30
21.90 22.60 22.70

22.00 22.80 22.90
21.90 22.40 22.30
21.30 21.90 21.70

10.7.
10.8-

10.8.
7.64 -
7.69 •
22.3O

22.0O

Table 11: DEC Alpha EV4

21

Table 12: DECAlphaEV5
grid size

16 32 64 80
x-1 58.3• 58.2• 60.0, 62.2•
x-2 58.4• 58.1• 60.0, 62.2•
x-: 57.3• 56.1, 57.0* 60.4,
x-_ 103.O111.O!116.O117.O
x-_ 76.6• 87.9o 93.9o96.1o

50.0 • 49.4 • 50.9 • 42.2 •

y-2 50.2 • 49.4 • 50.9 • 42.2,
y-3 50.00 48.7• 50.40 42.1,
y-4 85.00 92.00 89.90 88.00
y-5 80.00 85.60 81.60 80.1o
y-6 42.8, 42.3 • 37.1 • 42.8 •

y-7 43.5, 42.1 • 33.9, 40.7,
z-1 22.5•
z-2 22.5 •
z-3 22.30
z-4 39.50
z-5 36.20
z-6 38.50
z-7 30.4•

Table 13: Sun UltraSparc

grid size

16 32
x-1 31.9• 24.5o

x-2 33.6• 25.3o
x-3 32.0• 124.5o

x-4 45.70 31.00
x-5 42.00 29.40

y-1 28.2o 24.50

y-2 28.8o 24.80
y-3 28.7o 24.70
y-4 32.50 24.10
y-5 34.50 25.30
y-6 34.50 25.90
y-7 33.00 24.80
z-1

z-2

z-3

z-4

z-5

z-6

z-7

64 80
25.0o 25.1o
25.7o _25.8o

25.10 25.2o
31.60 31.70
30.00 30.1 •
25.00 22.3o
25.30 22.4o

25.10 21.9o
23.7o 23.4o
25.00 24.70
26.40 26.40
25.20 25.20

19.70
19.80
19.30
15.3•

16.1o
19.90
15.5•

Table 14: HP PA-RISC

grid size

16 32 64 80
x-1 71.1• 28.2oi27.9o 28.3o
x-2 59.9, 23.6• 23.2• 23.6•
x-3 73.1• 27.8• 26.9• 27.0•

x-4 90.5• 34.30133.30J33.20
x-5 134.O 35.90 34.80 35.20

y-1 57.8* 23.3• 22.5• 22.9•
y-2 58.8- 23.3• 22.6• 23.2•
y-3 74.9• 28.80 27.5o 28.30
y-4 86.3• 30.40 30.20 30.2•
y-5 117.O 30.60 30.40 30.30
y-6171.0• 26.3o 26.5o 26.4o

y-7 78.1• 30.50 30.60 30.60
z-1 13.6-
z-2 13.6 •
z-3 16.0.
z-4 22.80
z-5 24.00
z-6 15.9•
z-7 10.7,

Table 15: Cray J90

grid size

16 32 64 80

x-: 44.30 63.60 79.80 68.30
44.30 63.0• 75.00i66.9•

x-: 43.7• 65.00 77.70 68.10
x-_ 41.90 61.60 74.90 67.60
x-5 26.3• 43.0• 57.5• 64.20

y-1 31.7• 49.5• 64.4o 55.6o
y-2 31.9•49.2• 65.0o 54.8o
y-3 33.0•150.0• 65.4o 53.7o
y-4 43.80 61.90 79.40 67.70
y-5 27.2• 43.0• 58.2• 65.10
y-6 26.3• 41.6• 62.2• 67.3•
yo7 44.50 65.10 74.70 65.0•
z-1 52.4•
z-2 52.6 •

z-3 52.9 •
z-4 66.40
z-5 63.80
z-6 64.40
z-7 69.20

Table 16: Cray C90

grid size

16 32 64 80
x-1 166.O 260.0 378.0 386.0
x-2 164.• 263.• 382.• 394.•
x-: 164.O 264.0 389.• 386.0
x-_ 158.O 236.o 317.o 325.o
x-5 87.9 • 153. • 239. • 263.•

y-1 95.9• 172. o 282.o!313.o
y-2 96.0• 172. o 283.o 315.•
y-3 96.1• 172.o 282.o 312.o
y-4 158.O 245.0 333.0 344.0
y-5 84.1• 146.• 225.0 249.0
y-6 85.1• 148.• 226.0 254.0
y-7 159.O !246.0 318.O 327.0
z-1 314.O
z-2 314.O
z-3 316.O
z-4 340.•
z-5 252. •

z-6 253.0
z-7 341.O

22

B.2: Scalar window code performance

Only natural loop orderings and unrolled m-loops are amenable to the scalar window opti-

mizations. Hence, only optimizations xloop-3,_,5, yloop-6, 7, and zloop-6, 7 are presented.

Table 17: MIPS R5000

x-3
x-4

x-5

y-6
y-7
z-6

z-7

Table 18: MIPS R8000

80
15.1

15.1
14.3
13.3
13.5
11.6
11.0

Table 19: MIPS R10000

grid size grid size grid size

16 32 64 16 32 64 16 32 64
13.6 14.8 14.9 62.8 66.2 35.7 139. 147. 95.3
13.6 14.5 15.0 62.9 66.2 36.9 139. 146. 67.1

12.9 13.7 14.2 52.5 54.7 28.2 131. 142. 67.2
12.6 13.5 13.0 51.7 53.9 27.8 126. 135. 73.2
13.0 14.0 12.8 57.1 62.0 35.7 134. 140. 73.9

Table 20: IBM POWER2

X_3 _

x-4
x-5

y-6
y-7
z-6

z-7

8O

36.6
36.9
28.0
27.7

36.2
25.0
30.1

x-3
x-4
x-5

y-6
y-7
z-6

z-7

Table 21: PentiumPro

x-3!
X_4 _

X-5

y-6
y-7
z-6

z-7

8O
93.8
67.8

67.8
64.0
64.6

16
64.5
66.4
54.0
49.7

58.0

x-3
x-4
x-5

y-6
y-7
z-6

z-7

Table 22: DEC Alpha EV4

26.7
27.1

grid size grid size grid size

32 64 80 16 32 64 16 32 64 80
62.9 64.3 65.6 31.7 23.4 24.3 11.1 11.4 11.6 11.6

66.0 66.0 66.0 33.2 22.6 23.3 12.7 13.1 13.3 13.4
51.8 52.3 53.1 33.2 22.7 23.4 11.0 11.4 11.5 11.6

47.3 47.7 28.5 20.8 21.7 11.2 11.4 11.3
56.9 58.4 26.4 19.6 20.3 12.9 13.3 12.9

47.7

58.3
41.2
43.2

Table 23: DEC Alpha EV5 Table 24: Sun UltraSparc

x-3
x-4
x-5

y-6
y-7
z-6

z-7

8O

24.6 x-3
23.5 x-4
23.5 x-5

21.8 y-6
20.3 y-7
21.8 z-6
20.9 z-7

Table 25: HP PA-RISC

8O
32.5
32.3
27.7
26.7
31.2
20.0
17.1

grid size grid size grid size

16 32 64 80 16 32 64 16 32 64
76.9 74.6 79.3 80.8 45.4 31.2 32.2 100. 53.6 56.6
115. 117. 121. 122. 44.8 31.2 32.1 99.4 54.4 56.8
51.4 56.5 59.7 60.3 35.4 26.7 27.5 126. 43.7 44.6
35.6 35.0 33.5 34.3 26.0 26.6 118. 38.4 39.7
53.9 53.5 42.0 43.2 30.4 31.0 82.6 37.9 39.8

Table 27: Cray C90

8O
164.

166.
132.
131.
161.
131.

162.

x-3

x-4
x-5

y-6
y-7
z-6

z-7

35.6
52.3
31.9
41.1

x-3
x-4
x-5

y-6
y-7
z-6

z-7

Table 26: Cray J90

grid size

16 32 64
21.4 31.1 41.8
20.6 30.4 41.6
12.5 20.3 30.3
12.6 20.7 30.3
20.7 30.6 42.1

80
35.2 x-3
34.9 x-4
34.1 x-5

34.4 y-6
34.8 y-7
35.1 z-6
35.5 z-7

11.1
12.8
11.2
13.8

grid size

16 32 64
64.2 109. 155.

67.2 112. 158.
40.3 73.0 118.
40.1 72.8 116.
63.7 106. 150.

x-3
x-4
x-5

y-6

y-7
z-6

z-7

80

56.4
57.0
44.7
39.9
40.0
19.6
12.4

23

Appendix C: Simulated cache performance (% load misses).

Table 28: MIPS R5000 Table 29: MIPS R8000

grid size

16 32 64 80
x-3 6.780 6.120 5.830 5.770 x-3
x-4 6.45(3 5.97(3 5.76(3 5.71(3 x-4

y-3 6.48(3 5.98(3 5.76(3!9.89o y-3
y-4 6.630 6.060 5.800 5.75(3 y-4
y-7 6.630 6.060 6.880 6.180 y-7
z-3 12.7- z-3
z-4 16.8 • z-4

z-7 5.75(3 z-7

grid size

16 32 64

0.00(3 0.00(3.369(3
0.00(3 0.00(3.369(3

0.00(3 0.00(3.369(3
0.00(3 0.00(3.369(3
0.00(3 0.00(3.369(3

80

.3690

.359(3

.359(3

.359(3

.3590

.359(3
.359(3
.359(3

Table 30: MIPS R10000

grid size

16 32 64 80

x-3 0.00(3.060(3 1.46(311.450
x-4 0.00(3.229. 1.46(311.44(3
y-3 0.00(3.050(3 1.45(3 /1.440

y-4_0.00(3.229. 1.460/1.43(3
y-7 0.00(3.229. 1.460 1.440
z-3 1.43(3
z-4 !1.440
z-7 1.440

Table 31: IBM POWER2

x-3
x-4

y-3
y-4
y-7
z-3
z-4
z-7

16
.6360
.587(3
.537(3
.5870
.5470

grid size

32 64
.7840.7350
.764(3.725(3
.764(3.725(3
.764(3!.725(3
.764(3.7540

80
.725(3
.725(3
.715(3
.7250
.7840
1.59 o
2.11.
.725(3

Table 32: PentiumPro

x-3
x-4

y-3
y-4
y-7
z-3

z-4

z-7

grid size

16 32 64 80
3.980 6.120 5.830 5.770
3.22(3 5.97(3 5.76(3 5.71(3

2.84(3 5.98(3 5.76(3 5.71(3
3.7206.060 5.800 5.750
3.73oi6.060 5.800 5.750

12.7*
16.8"

5.75(3

Table 33:

x-3
x-4

y-3
y-4
y-7
z-3
z-4i
z-7[

DEC Alpha EV4

grid size

16 32 64
6.78(3 !6.12(3i 5.83(3
6.860 6.360 6.150
10.6o 5.98(3 9.930
8.940 10.3o 14.0*
7.56(3 7.460 8.620

80
5.770
6.110
12.7o
15.2*
8.980
12.7o
17.2o
8.360

Table 34: DEC Alpha EV5

grid size

16 32 64 80
x-3 6.780 6.120 5.830 5.770

x-4 6.45(3 5.97(3 5.76(3 5.71(3
y-3 6.48(3 5.98(3 5.76(3 5.71(3
y-4 6.630 6.060 5.800 5.750
y-7 6.630 6.060 5.800 5.750
z-3 12.7.
z-4 16.8 •
z-7 5.75(3

Table 35: Sun UltraSparc

x-3
x-4

y-3
y-4
y-7
z-3

z-4

z-7

grid size

16 32 64
0.00(3 3.070 2.91(3

0.00(3 3.04(3 2.91(3
0.00(3 3.00(3 2.88(3
0.00(3 3.100 2.990
0.00(3 3.100 !2.990

80

2.880
2.880
2.86(3
2.98 •
2.980
5.61.
8.42 •
2.970

Table 36:

x-3

x-4

y-3
y-4

y-7
z-3

z-4

z-7

16
7.270

7.01(3i
11.9o
7.650
7.38(3

HP PA-RISC

grid size

32 64 80
6.520 6.19(3 6.12(3
6.47(3 6.220 6.170
6.36(3 6.11(3 13.6.
7.680 8.52o 9.030
6.850 8.400 6.890

14.5 *

20.3 •
6.79(3

24

